"MS-Patch-Clamp"or the Possibility of Mass Spectrometry Hybridization with Patch-Clamp Setups for Single Cell Metabolomics and Channelomics
نویسندگان
چکیده
In this projecting work we propose a mass spectrometric patch-clamp equipment with the capillary performing both a local potential registration at the cell membrane and the analyte suction simultaneously. This paper provides a current literature analysis comparing the possibilities of the novel approach proposed with the known methods, such as scanning patch-clamp, scanning ion conductance microscopy, patch clamp based on scanning probe microscopy technology, quantitative subcellular secondary ion mass spectrometry or "ion microscopy", live single-cell mass spectrometry, in situ cell-by-cell imaging, single-cell video-mass spectrometry, etc. We also consider the ways to improve the informativeness of these methods and particularly emphasize the trend at the increasing of the analysis complexity. We propose here the way to improve the efficiency of the cell trapping to the capillary during MS-path-clamp, as well as to provide laser surface ionization using laser trapping and tweezing of cells with the laser beam transmitted through the capillary as a waveguide. It is also possible to combine the above system with the microcolumn separation system or capillary electrophoresis as an optional direction of further development of the complex of analytical techniques emerging from the MS variation of patch-clamp.
منابع مشابه
Patch Clamp Electrophysiology and Capillary Electrophoresis–Mass Spectrometry Metabolomics for Single Cell Characterization
The visual selection of specific cells within an ex vivo brain slice, combined with whole-cell patch clamp recording and capillary electrophoresis (CE)-mass spectrometry (MS)-based metabolomics, yields high chemical information on the selected cells. By providing access to a cell's intracellular environment, the whole-cell patch clamp technique allows one to record the cell's physiological acti...
متن کاملVoltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملP 17: Electrophysiological Effects of Cannabinoid Receptor Antagonist AM251 on Harmaline Toxicity in Rat’s Cerebellar Vermis Slices
Introduction: The Cannabinoid receptors (CBR) densities are high within the cerebellum. Cannabinoid receptors manipulations have been reported to cause altering the cerebellar functions. harmaline have immune-modulatory effects in several studies. i.e., significant anti-inflammatory effect via the inhibition of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α). Endocannabino...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کامل